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ABSTRACT: Modeling the spatio-temporal distribution and characteristics of particulate matter remains a 
focal point of research. In the present study we model the spatio-temporal structure of 10PM  with and 
without a spatial trend made of environmental covariates. (i) Spatio-temporal interpolation without 
accounting for covariates is done by using ordinary space-time kriging. (i) To include covariates into the 
model we propose the following methodology, a combination of methods that has not been investigated 
before: generalized additive regression is employed to capture the effects of the covariates by partitioning 
the output into a trend and a residual component. Furthermore, the unknown trend components at ungauged 
locations are estimated by spatial artificial neural networks and the corresponding residual components are 
predicted by means of ordinary space-time kriging based on a nested spatio-temporal covariance function 
that is optimized by a particle swarm algorithm. The results of both methods (i and ii) are compared by 
means of cross validation and it is found that the new methodology which takes the covariates into account 
performs significantly better, in particular, it yields a smaller mean squared error. 
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1. INTRODUCTION 
Earlier research [(1)& (3)] indicates that particulate matter 

(PM) concentration is related to thousands of deaths and 

regarded as a widespread health problem. Amongst others, 

the Environmental Protection Agency (EPA) of the United 

States of America is interested to understand the 

characteristics of PM. EPA scientists continue to conduct 

research related to the adverse health effects of PM by 

performing clinical studies and using the methods of 

epidemiology and toxicology. [14] proposed a random effects 

model for 2.5PM  concentrations. They introduce two 

random effects components, one for rural or background 

levels and the other as a supplement for urban areas and 

specified as spatio-temporal processes. They analyzed daily 

2.5PM  concentrations in three midwestern U.S. states for 

the year 2001. [16] used a Geographic Information System 

(GIS) based spatial smoothing model to predict monthly 

outdoor 10PM  concentrations in the northeastern and 

midwestern U.S. This model included monthly smooth spatial 

terms and smooth regression terms of GIS-derived and 

meteorological predictors. [5] compared space-time kriging 

with spatial kriging to predict an outpatient malaria data set 

and concluded that space-time kriging prediction produces 

more precise results than spatial kriging.  

Amongst others [6, 7] showed that it may be beneficial to 

include information about covariates, e.g. environmental 

variables, into classical space-time interpolation models by 

analyzing precipitation in Pakistan during the Moonson 

season. Specifically in case of PM, [13] developed a 

conceptually simple spatio-temporal model which is also able 

to account for the effects of covariates. It has the ability to 

capture space-time interaction through the use of monthly 

varying spatial surfaces on large scale spatial heterogeneity. 

One limitation of their model, however, is that it cannot be 

used to predict the values of the response variable at 

unobserved locations when information about the covariates 

is missing.  

The present paper extends the existing methodology by 

proposing to estimate the unknown covariates at ungauged 

locations first and to use them for spatio-temporal prediction 

subsequently presented in [8]. We apply a generalized 

additive regression model and estimate the unknown trend 

components by a spatial artificial neural network. Prediction 

of the residual components is then performed by ordinary 

space-time kriging and fitting a separable nested space-time 

covariance function using a particle swarm optimization 

algorithm. 

The paper is organized as follows. Section 2 presents the 

proposed methodological framework and the study data set. 

Section 3 includes the study results and compares the 

proposed approach for spatio-temporal interpolation of 

10PM  with classical ordinary space-time kriging, which is 

not capable of incorporating covariates. We conclude that the 

spatio-temporal interpolation including covariates clearly 

performs better, i.e. yields a significantly smaller root mean 

square error. Finally, Section 4 is devoted to discussions. 

 

2  MATERIAL AND METHODS 

2.1  Study area 

 In the present study we consider the 10PM  mass 

concentration data used by [13] and [16] with Northern U.S. 

as the spatial domain. In their study 10PM  data were 

recorded from 922 sites but due to missing observations at 

most of the sites, we consider only those 61 sites in the same 

spatial domain where monthly concentrations for the years 

1998-2002 were completely recorded. The distribution of 
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spatial locations is shown in Fig. 1. Temperature, wind speed, 

precipitation and the logarithm of area-source emissions of 

PM10 in short tons per year of the county that the monitoring 

site is within (logAreaEmit10) are considered as covariates.  
 

 
Figure 1: The distribution of gauged locations in the study data set. 

2.2  Space-time model 

 Classical space-time models assume that the response 

variable is normally distributed. Since the distribution of 

10PM  is always skewed and positive, we apply the 

Box-Cox transformation to fulfill the assumption of 

normality. Let  ts,Z  denote the response variables at 

location s  and time t , and let  ts,Y  be the Box-Cox 

transformed responses, respectively, i.e.  
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 We make use of the decomposed space-time modeling 

approach suggested by [15], 

     ,,,=, tsRtstsY   (1) 

 where  ts,  is the trend component modeled as a 
deterministic function of the spatial location s  and the time 
point t , and  tsR ,  is the residual component describing 
fluctuations around the mean. We propose to use the 
generalized additive regression model (GAM) described in 
[4] with Gaussian link function for estimating the space-time 
model Eq. 1. The resulting output is partitioned into a trend 
component and a residual component. The trend component 
can be assumed to be deterministic, it can vary with respect to 
time and space if the spatial and temporal covariates are 
included. In our case we model the trend component based on 

temperature, wind speed and precipitation as space-time 
covariates and logAreaEmit10 as a purely spatial covariate, 
.i.e.  
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 where if  are smooth arbitrary functions and 4=k  

represents the number of environmental and spatio-temporal 

covariates iX , ki ,1,=  . The trend model  ts,  is 

deterministic implying that there is no interaction between 

spatial and temporal variation. For ungauged sites we propose 

to model  ts,  using a spatial artificial neural network 

(SANN) as proposed by [11]. The SANN is a combination of 

four layers: input layer, Gaussian Kernel Function (GKF) 

layer, summation layer and estimation layer. The relationship 

among the four layers is displayed in Fig. 2. Suppose we have 

N  gauged sites whose trend component  ts,  is known 

and we want to estimate the trend component  ts,

  at 

ungauged sites. Let   2

21, Rsss  in  ts,  

represent the spatial coordinates longitude and latitude, 

respectively, and t  the time point, then the input layer will 

be  ts,  with three nodes. The input layer passes through 

the GKF layer without weighting. The GKF layer has N  

nodes which consist of observed vectors   Njts j 1=,, . 

The Gaussian kernel can be defined as activation output ja ,  
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,  is the distance of the 
thj  

input vector from the corresponding node center s  and 
2

, js  is the width or smoothing parameter which defines the 
respective field of influence of the regions for weighting of 
neighbor points for each GKF node. The parameter 

2

, js  
depends on the number of neighboring points and the control 
factor F , which determines the density of the network. The 
parameter 

2

, js  can be estimated by the ratio of the root 
mean squared distance, sRMSD , of the K  (nearest 
neighbors) and the control parameter F , i.e  

    ,,1,=,
1

=
2

1

1=

Njssss
K

RMSD ji

T

ji

K

i
j

s 







  

 where is  is the 
thi  nearest neighbor point from the center 

of js , the 
thj  GKF node. Now the smoothing parameter 

can be determined as  
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The summation layer is a combination of two nodes. The 

output of GKF nodes passes to the summation layer through 

weighted connections:   
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 Finally, the output layer is the ratio of 
2G  and 

1G  

obtained from the summation layer, i.e.  
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Figure 2: The structure of the spatial artificial neural network. 

 

2.2.1  Spatio-temporal covariance modeling 

The nested spatio-temporal covariance model proposed by 

[17] can be written as a linear combination of separable 

purely spatial and purely temporal covariance models which 

describe the dependence of the residual components at 

multiple scales of space and time:  

     .;;=;,
1=

tsl

L

l

st CthCsbhC  
         

(4) 

Here Cs  and Ct  are permissible correlation functions at 
purely spatial and temporal domains with sills lb , 

Ll ,1,=  . The particle swarm optimization (PSO) [9] 
algorithm is used to select an appropriate combination of 
permissible covariance models. PSO is used to solve 
non-linear optimization problems in many research fields, it 
depends only on the objective function to select optimal 
solutions from the given velocity and the solution space. The 
particle d  represents a feasible solution and dix ,  is the 
solution space which moves with varying velocity .,div  The 
PSO starts from a group of random solutions and iteratively 
searches for optimal solutions. In each iteration every particle 
is updated by following the best nearest neighbor solution 

dip ,  and the global best solution dgp , . After finding dip ,  
and dgp ,  the particle updates its velocity and positions as 
follows  
 

   ,= ,,22,,11,1, didgdidididi xpUcxpUcvv   

 ,= 1,,1, dididi vxx    

where div 1,  is the updated velocity of particle d  and 
1c  

and 
2c  are learning factors. Here, 

1U  and 
2U  are random 

numbers drawn uniformly from the unit interval. For fitting a 
covariance model using the PSO algorithm we consider the 
following weighted least squares criterion proposed by [2] as 
an objective function in PSO:  
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where stĈ  denotes the empirical covariance function and 

H  and T  define the number of spatial and temporal lags, 

respectively. Here the parameter vector   includes the sills 

and the ranges for all separable structures in the space-time 

covariance function. Further, the number of parameters of the 

covariance model (Eq. 4) is chosen based on the Akaike 

Information Criterion (AIC). All possible nested models are 

sequentially tested and the one with lowest AIC value is 

selected.  

2.3  Space-time kriging 
The major aim in (space-time) geostatistics is typically to 
predict the value of  00

* , tsY  at unobserved locations 0s  
and unobserved time 0t  based on the observed data 
 ii tsY , , ni ,1,=  , where  ii ts ,  represents the vector 

of spatio-temporal coordinates and n  is the number of 
observed locations/time points. The value of  00

* , tsY  can 
be predicted by kriging as originally developed by [12] for 
purely spatial domains, and which was modified by [10] to 
incorporate the data distributed through spatial and temporal 
domains. For predicting the value of  00 , tsY  at an 
unobserved location and/or time point, a linear predictor is 
used, i.e.  

     ,,,=,
1=

00

*

iiiii

n

i

tsYtstsY   (5) 

where   1=,
1= iii

n

i
ts  assures unbiasedness. For 

estimating the optimum weights, space-time kriging 

minimizes the prediction variance while implicitly taking 

account of the covariances between observed and unobserved 

locations and time points:  

      20000

*

00

2 ,,=, tsYtsYEts   (6) 

3  Study Results 

This section presents the results for parameter estimation and 

spatio-temporal prediction of the 10PM  data set introduced 

in Section 2.1 under the model proposed in Sections 2.2-2.3. 

Moreover, these results are compared to those of classical 

ordinary space-time kriging.  
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Figure 3: Boxplot of the Box-Cox transformed 10PM  

measurements at each location. 

3.1  Parameter estimation results 
Since the 10PM  data is positively skewed, the Box-Cox 
transformation is applied to normalize the data and the 
transformation parameter   is estimated as 0.3=̂ . The 
boxplots of the transformed data are shown in Fig. 3. The 
generalized additive regression model is used to capture the 
influence of covariates on 10PM . The partial effect of 
covariates on 10PM  is displayed in Fig. 4. The black dots 
represent the individual partial residuals of the covariates 
whereas lines represent the smoothed partial effect of the 
covariate on the response variable. The shaded red colored 
area represents the corresponding 95%  credible interval.  
The nested separable spatio-temporal covariance model 

estimated using the PSO algorithm for the transformed 

10PM  and for the residual components resulting from the 

GAM (Eq. 1) are shown in Eq. 7 and Eq. 8, respectively. The 

fitted nested covariance model contains two structured 

separable spatio-temporal covariance models for covariance 

modeling of transformed 10PM  i) spatial exponential and 

temporal exponential ii) spatial Gaussian and temporal 

exponential. The residual covariances model also consist of 

two structured models i) exponential spatial and exponential 

temporal ii) exponential spatial and Gaussian temporal. The 

fitted spatio-temporal covariance functions for transformed 

10PM  and the residual component are shown in the left and 

right panel of Fig. 5, respectively.   
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 where 0.27=1c  and 0.42=2c  are the corresponding 
sills, 
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(  are the spatial 
and temporal ranges. The covariance models fitted for the 
residual components have sills 0.29=1c  and 0.16=2c . 
The corresponding spatial and temporal ranges are 
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respectively.  

 

Figure 4: The effect of covariates on 10PM  for gauged locations. 

The title of the y-axis contains the name of the smoothed covariate 

together with the respective bandwidth at which it was smoothed. 

Furthermore, the trend components, i.e. the unknown values 
of the covariates, are estimated using the SANN. Thirty sites 
are considered as observed training points, while the 
remaining thirty-one sites are treated as unknown and are 
re-estimated. For every month under consideration vectors of. 
Ordinary space-time kriging excluding covariates is also 
performed for the ungauged locations based on the fitted 
covariance model of transformed 10PM  and different 
values for control parameter F  and nearest neighbor points 
K  are used for training data. The optimal values of the 
control parameter F , the number of nearest neighbor points 
K  and corresponding minimum mean squared error are 
presented in Table 1. The program to perform training and 
estimation is provided with supplementary material. 
Furthermore, the residuals at the ungauged locations are 
predicted with the help of ordinary space-time kriging and are 
added to the respective estimated trend values. The resulting 
predictions in the Gaussian space are then back-transformed 
to the original scale using the inverse Box-Cox 
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transformationthen back-transformed to the original scale. 
Note, that applying the inverse Box-Cox transformation as 
the back-transformation method inplies that the estimator for 

10PM  is the median and not the mean of the predictive 
distribution. Approximating the mean of the predictive 
distribution, e.g. by using the delta-method, would only be 
possible in case of ordinary space-time kriging. This is 
because the prediction variance in case of the alternative 
model including covariates is difficult to assess due to the use 
of the SANN. To guarantee a fair comparison, we decided to 
use the inverse Box-Cox transformation for both models. 

Figure 5: Empirical and theoretical spatio-temporal 

covariance function. Top panel: Box-Cox transformed PM10. 

Bottom panel: Residuals of the fitted GAM. 

3.2  Space-time prediction results 

The corresponding prediction maps are shown in Fig. 6 and 

Fig. 7. Overall, we find that the results for the model 

including covariates are more reliable, e.g. the maximum of 

all predicted values of the alternative model without 

covariates is about 150, while the largest observed value is 

only 61.5 which approximately corresponds to the results of 

the model that takes the covariates into account. Moreover, 

the prediction maps corresponding to the interpolation 

excluding covariates show more variation than those resulting 

from the model that takes into account the covariate 

information. 

As a quantitative method for model comparison we employ 

leave-one-out cross validation. Table 2 shows the root mean 

squared prediction error (RMSPE) for both methods. It is 

observed that for most of the considered months the 

prediction method including covariates yields a significantly 

smaller RMSPE compared to the prediction without 

covariates. The coefficient of determination, 
2R , for the 

model including covariates is 47%  whereas for the model 

without covariates this value is only 6% . The sigificant 

increase in 
2R  and the smaller RMSPE indicate that the 

model including covariates performs significantly better. 

Figure 8 displays the approximate ordinary space-time 

kriging prediction variance for January estimated by the 

delta-method. The results for all the other months are very 

similar. The delta-method, in this case, proceeds as follows:  
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 where 0.3=̂ , ),( 00

* tsY  is the ordinary space-time 

kriging predictor in the transformed (Gaussian) space (Eq. 5) 

and ),( 00

2 ts  is the corresponding prediction variance 

(Eq. 6). As already thematized, it is difficult to estimate the 

prediction variance for the proposed method, which also 

predicts the covariates, because of the additional uncertainty 

induced by the SANN. Approximate inference is possible, 

e.g. by applying a bootstrap procedure and analyzing the 

resulting bootstrap distribution. However, bootstrapping is a 

very time-consuming alternative, which is why it has not been 

employed in this study. 

4  DISCUSSION 
The present paper compares two spatio-temporal 
interpolation methods that can be employed to predict 

10PM . The first one is ordinary space-time kriging which 
does not have the possibility to take unknown covariates at 
unobserved locations into account. The second method, 
which we propose in this paper, estimates the covariates using 
a spatial artificial neural network in combination with 
generalized additive regression. It is observed that the novel 
model not only leads to a smaller root mean squared error 
compared to the model without covariates but also suits the 
data better from a qualitative perspective. The prediction 
maps presented in Fig. 6 show that the behavior of 10PM  
changes temporally. The amount on 10PM  remains very 
low in the month of February and very high in months of June 
and July. Moreover, it can be concluded that during the winter 
season from December to April the amount of 10PM  gets 
lower, whereas in the summer season it gets higher, which 
shows that temperature has a major impact on 10PM . The 
spatial behavior of 10PM  remains similar throughout the 
year. 
The proposed method has the benefit that it is able to 
interpolate the values of 10PM  for any month and any 
location, even if the values of covariates are unknown. One of 
the disadvantages is that the prediction variance cannot be 
assessed easily. This remains one of the major issues for 
future research. 
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Figure 6: Prediction maps for 10PM  resulting from the proposed model including covariates. 

 

 

 

Figure 7: Ordinary space-time kriging prediction maps for 10PM
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Table 1: SANN: Minimum mean square error and optimal parameter values for year 2002. 

 

 
Table 2: Root mean square cross-validation error corresponding to space-time kriging including and excluding covariates at ungauged 

locations. 

 
 

Figure 8: Ordinary space-time kriging prediction variance map for 

10PM , January 2002. 
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